CFD analysis of number of blades on the performance of counter rotating wind turbine designed using blade element momentum theory under transient condition
Unsteady CFD simulations on the effects of number of blades on counter rotating wind turbine (CRWT) were carried out in order to investigate the performance and the flow characteristics. In this paper, 2-bladed and 3-bladed CRWT were designed using Blade Element Momentum Theory (BEMT) which comprise...
Gespeichert in:
Veröffentlicht in: | MATEC web of conferences 2018-01, Vol.197, p.8015 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unsteady CFD simulations on the effects of number of blades on counter rotating wind turbine (CRWT) were carried out in order to investigate the performance and the flow characteristics. In this paper, 2-bladed and 3-bladed CRWT were designed using Blade Element Momentum Theory (BEMT) which comprised of S833, S834, and S835 airfoils. As a comparison baseline, a SRWT model which have similar design with front rotor of the 3-bladed CRWT would be also investigated. It was found that the SRWT had the same rotational speed with the front rotor of the 3-bladed CRWT. There was about 10.24 % and 11.79 % rotational speed reduction of the rear rotor from the front rotor of 2-bladed CRWTs and 3-bladed CRWTs, respectively. Both of 2-bladed CRWT and 3-bladed CRWT have higher total power than SRWT, thereby generating more larger velocity deficits in the wake flow. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/201819708015 |