Potential Application of Genomic Technologies in Breeding for Fungal and Oomycete Disease Resistance in Pea
Growth and yield of pea crops are severely affected by various fungal diseases, including root rot, Ascochyta blight, powdery mildew, and rust, in different parts of the world. Conventional breeding methods have led to enhancement of host plant resistance against these diseases in adapted cultivars,...
Gespeichert in:
Veröffentlicht in: | Agronomy (Basel) 2021-06, Vol.11 (6), p.1260 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Growth and yield of pea crops are severely affected by various fungal diseases, including root rot, Ascochyta blight, powdery mildew, and rust, in different parts of the world. Conventional breeding methods have led to enhancement of host plant resistance against these diseases in adapted cultivars, which is the primary option to minimize the yield losses. To support the breeding programs for marker-assisted selection, several successful attempts have been made to detect the genetic loci associated with disease resistance, based on SSR and SNP markers. In recent years, advances in next-generation sequencing platforms, and resulting improvements in high-throughput and economical genotyping methods, have been used to make rapid progress in identification of these loci. The first reference genome sequence of pea was published in 2019 and provides insights on the distribution and architecture of gene families associated with disease resistance. Furthermore, the genome sequence is a resource for anchoring genetic linkage maps, markers identified in multiple studies, identification of candidate genes, and functional genomics studies. The available pea genomic resources and the potential application of genomic technologies for development of disease-resistant cultivars with improved agronomic profile will be discussed, along with the current status of the arising improved pea germplasm. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy11061260 |