Downregulation of super oxide dismutase level in protein might be due to sulfur mustard induced toxicity in lung
Sulfur mustard (SM) has been identified as an important chemical weapon. During the Iran-Iraq war of 1980-88, the extensive usage of SM against Iranian civilians and military forces was proven. This agent has been shown to cause severe damage mainly in the skin, eyes, lungs, and respiratory tract in...
Gespeichert in:
Veröffentlicht in: | Iranian journal of allergy, asthma, and immunology asthma, and immunology, 2013-06, Vol.12 (2), p.153-160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sulfur mustard (SM) has been identified as an important chemical weapon. During the Iran-Iraq war of 1980-88, the extensive usage of SM against Iranian civilians and military forces was proven. This agent has been shown to cause severe damage mainly in the skin, eyes, lungs, and respiratory tract in Iranian veterans. The most common disease is bronchiolitis obliterans (BO)). SM increases the endogenous production of reactive oxygen species (ROS). Superoxide dismutases (SODs) are known as protective antioxidants against the harmful effects of ROS. Twenty exposed SM individuals (43.2±6.4 years), and 10 normal controls (41.3±2.5 years) were enrolled in this study. Evaluation of SODs was performed by semiquantitative RT-PCR and immunohistochemistry. Our results demonstrated that CuZnSOD and MnSOD mRNA were up-regulated 2.79±1.09 and 2.49±1.11 folds, respectively in SM-injured patients in comparison with control levels. In contrast, Immunohistochemistry results showed downregulation of CuZnSOD protein expression in SM injured patients. Our results revealed that SODs may play an important role in cellular protection against oxidative stress due to mustard gas toxicity in airway wall of SM exposed patients. |
---|---|
ISSN: | 1735-1502 1735-5249 |