Inter-Comparison of Ensemble Forecasts for Low Level Wind Shear against Local Analyses Data over Jeju Area
Ensemble verification of low-level wind shear (LLWS) is an important issue in airplane landing operations and management. In this study, we conducted an accuracy and reliability analysis using a rank histogram, Brier score, and reliability diagram to verify LLWS ensemble member forecasts based on gr...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2020-02, Vol.11 (2), p.198 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ensemble verification of low-level wind shear (LLWS) is an important issue in airplane landing operations and management. In this study, we conducted an accuracy and reliability analysis using a rank histogram, Brier score, and reliability diagram to verify LLWS ensemble member forecasts based on grid points over the Jeju area of the Republic of Korea. Thirteen LLWS ensemble member forecasts derived from a limited area ensemble prediction system (LENS) were obtained between 1 July 2016 and 30 May 2018, and 3-h LLWS forecasts for lead times up to 72 h (three days) were issued twice a day at 0000 UTC (9 am local time) and 1200 UTC (9 pm local time). We found that LLWS ensemble forecasts have a weak negative bias in summer and autumn and a positive bias in the spring and winter; the forecasts also have under-dispersion for all seasons, which implies that the ensemble spread of an ensemble is smaller than that of the corresponding observations. Additionally, the reliability curve in the associated reliability diagram indicates an over-forecasting of LLWS events bias. The selection of a forecast probability threshold from the LLWS ensemble forecast was confirmed to be one of the most important factors for issuing a severe LLWS warning. A simple method to select a forecast probability threshold without economic factors was conducted. The results showed that the selection of threshold is more useful for issuing a severe LLWS warning than none being selected. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos11020198 |