A Lightweight Structure Redesign Method Based on Selective Laser Melting

The purpose of this paper is to present a new design method of lightweight parts fabricated by selective laser melting (SLM) based on the "Skin-Frame" and to explore the influence of fabrication defects on SLM parts with different sizes. Some standard lattice parts were designed according...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2016-11, Vol.6 (11), p.280-280
Hauptverfasser: Tang, Li, Wu, Chunbing, Zhang, Zhixiong, Shang, Jianzhong, Yan, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to present a new design method of lightweight parts fabricated by selective laser melting (SLM) based on the "Skin-Frame" and to explore the influence of fabrication defects on SLM parts with different sizes. Some standard lattice parts were designed according to the Chinese GB/T 1452-2005 standard and manufactured by SLM. Then these samples were tested in an MTS Insight 30 compression testing machine to study the trends of the yield process with different structure sizes. A set of standard cylinder samples were also designed according to the Chinese GB/T 228-2010 standard. These samples, which were made of iron-nickel alloy (IN718), were also processed by SLM, and then tested in the universal material testing machine INSTRON 1346 to obtain their tensile strength. Furthermore, a lightweight redesigned method was researched. Then some common parts such as a stopper and connecting plate were redesigned using this method. These redesigned parts were fabricated and some application tests have already been performed. The compression testing results show that when the minimum structure size is larger than 1.5 mm, the mechanical characteristics will hardly be affected by process defects. The cylinder parts were fractured by the universal material testing machine at about 1069.6 MPa. These redesigned parts worked well in application tests, with both the weight and fabrication time of these parts reduced more than 20%.
ISSN:2075-4701
2075-4701
DOI:10.3390/met6110280