Transcriptome analysis of monocyte-HIV interactions

During HIV infection and/or antiretroviral therapy (ART), monocytes and macrophages exhibit a wide range of dysfunctions which contribute significantly to HIV pathogenesis and therapy-associated complications. Nevertheless, the molecular components which contribute to these dysfunctions remain elusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Retrovirology 2010-06, Vol.7 (1), p.53-53, Article 53
Hauptverfasser: Van den Bergh, Rafael, Florence, Eric, Vlieghe, Erika, Boonefaes, Tom, Grooten, Johan, Houthuys, Erica, Tran, Huyen Thi Thanh, Gali, Youssef, De Baetselier, Patrick, Vanham, Guido, Raes, Geert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During HIV infection and/or antiretroviral therapy (ART), monocytes and macrophages exhibit a wide range of dysfunctions which contribute significantly to HIV pathogenesis and therapy-associated complications. Nevertheless, the molecular components which contribute to these dysfunctions remain elusive. We therefore applied a parallel approach of genome-wide microarray analysis and focused gene expression profiling on monocytes from patients in different stages of HIV infection and/or ART to further characterise these dysfunctions. Processes involved in apoptosis, cell cycle, lipid metabolism, proteasome function, protein trafficking and transcriptional regulation were identified as areas of monocyte dysfunction during HIV infection. Individual genes potentially contributing to these monocyte dysfunctions included several novel factors. One of these is the adipocytokine NAMPT/visfatin, which we show to be capable of inhibiting HIV at an early step in its life cycle. Roughly half of all genes identified were restored to control levels under ART, while the others represented a persistent dysregulation. Additionally, several candidate biomarkers (in particular CCL1 and CYP2C19) for the development of the abacavir hypersensitivity reaction were suggested. Previously described areas of monocyte dysfunction during HIV infection were confirmed, and novel themes were identified. Furthermore, individual genes associated with these dysfunctions and with ART-associated disorders were pinpointed. These genes form a useful basis for further functional studies concerning the contribution of monocytes/macrophages to HIV pathogenesis. One such gene, NAMPT/visfatin, represents a possible novel restriction factor for HIV.
ISSN:1742-4690
1742-4690
DOI:10.1186/1742-4690-7-53