Discovering the Ultimate Limits of Protein Secondary Structure Prediction
Secondary structure prediction (SSP) of proteins is an important structural biology technique with many applications. There have been ~300 algorithms published in the past seven decades with fierce competition in accuracy. In the first 60 years, the accuracy of three-state SSP rose from ~56% to 81%;...
Gespeichert in:
Veröffentlicht in: | Biomolecules (Basel, Switzerland) Switzerland), 2021-11, Vol.11 (11), p.1627 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Secondary structure prediction (SSP) of proteins is an important structural biology technique with many applications. There have been ~300 algorithms published in the past seven decades with fierce competition in accuracy. In the first 60 years, the accuracy of three-state SSP rose from ~56% to 81%; after that, it has long stayed at 81-86%. In the 1990s, the theoretical limit of three-state SSP accuracy had been estimated to be 88%. Thus, SSP is now generally considered not challenging or too challenging to improve. However, we found that the limit of three-state SSP might be underestimated. Besides, there is still much room for improving segment-based and eight-state SSPs, but the limits of these emerging topics have not been determined. This work performs large-scale sequence and structural analyses to estimate SSP accuracy limits and assess state-of-the-art SSP methods. The limit of three-state SSP is re-estimated to be ~92%, 4-5% higher than previously expected, indicating that SSP is still challenging. The estimated limit of eight-state SSP is 84-87%. Several proposals for improving future SSP algorithms are made based on our results. We hope that these findings will help move forward the development of SSP and all its applications. |
---|---|
ISSN: | 2218-273X 2218-273X |
DOI: | 10.3390/biom11111627 |