Apolipoprotein E gene polymorphism modifies fasting total cholesterol concentrations in response to replacement of dietary saturated with monounsaturated fatty acids in adults at moderate cardiovascular disease risk

Consumption of ≤10% total energy from fat as saturated fatty acids (SFA) is recommended for cardiovascular disease risk reduction in the UK; however there is no clear guidance on the optimum replacement nutrient. Lipid-associated single-nucleotide polymorphisms (SNPs) have been shown to modify the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lipids in health and disease 2017-11, Vol.16 (1), p.222-222, Article 222
Hauptverfasser: Shatwan, Israa M, Weech, Michelle, Jackson, Kim G, Lovegrove, Julie A, Vimaleswaran, Karani S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consumption of ≤10% total energy from fat as saturated fatty acids (SFA) is recommended for cardiovascular disease risk reduction in the UK; however there is no clear guidance on the optimum replacement nutrient. Lipid-associated single-nucleotide polymorphisms (SNPs) have been shown to modify the lipid responses to dietary fat interventions. Hence, we performed a retrospective analysis in 120 participants from the Dietary Intervention and VAScular function (DIVAS) study to investigate whether lipoprotein lipase (LPL) and apolipoprotein E (APOE) SNPs modify the fasting lipid response to replacement of SFA with monounsaturated (MUFA) or n-6 polyunsaturated (PUFA) fatty acids. The DIVAS study was a randomized, single-blinded, parallel dietary intervention study performed in adults with a moderate cardiovascular risk who received one of three isoenergetic diets rich in SFA, MUFA or n-6 PUFA for 16 weeks. After the 16-week intervention, a significant diet-gene interaction was observed for changes in fasting total cholesterol (P = 0.001). For the APOE SNP rs1064725, only TT homozygotes showed a significant reduction in total cholesterol after the MUFA diet (n = 33; -0.71 ± 1.88 mmol/l) compared to the SFA (n = 38; 0.34 ± 0.55 mmol/l) or n-6 PUFA diets (n = 37; -0.08 ± 0.73 mmol/l) (P = 0.004). None of the interactions were statistically significant for the other SNPs. In summary, our findings have demonstrated a greater sensitivity of the APOE SNP rs1064725 to dietary fat composition, with a total cholesterol lowering effect observed following substitution of SFA with MUFA but not n-6 PUFA. Further large intervention studies incorporating prospective genotyping are required to confirm or refute our findings. The trial was registered at www.clinicaltrials.gov as NCT01478958.
ISSN:1476-511X
1476-511X
DOI:10.1186/s12944-017-0606-3