Recent Advances in the Synthesis of Electron Donor Conjugated Terpolymers for Solar Cell Applications

The synthesis of donor (D)-acceptor (A) polymers using structurally elaborated monomers is an active research field. Some of the challenges with the use of alternating D-A polymers for photovoltaic applications are the relatively narrow absorption widths, the presence an absorption valleys in the vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in materials 2020-08, Vol.7
Hauptverfasser: Gedefaw, Desta, Pan, Xun, Andersson, Mats R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The synthesis of donor (D)-acceptor (A) polymers using structurally elaborated monomers is an active research field. Some of the challenges with the use of alternating D-A polymers for photovoltaic applications are the relatively narrow absorption widths, the presence an absorption valleys in the visible region, unoptimized molecular energy levels and even lack of compatibility of the polymers with the common acceptors. The synthesis and characterization of polymers consisting of multiple chromophores (random and regular terpolymers) with complementing properties is currently gaining momentum in order to delicately optimize properties of polymers. A random terpolymer can either be of a system composed of one donor and two acceptors [(D-A1)-ran-(D-A2)] or a one acceptor and two donor segments [(D1-A)-ran-(D2-A)] incorporated in the polymer backbone. By varying the composition of the monomers in the feed of the polymerization reaction, the properties of the resulting terpolymers can be carefully optimized. Using this strategy, many materials with desired properties have been developed and power conversion efficiency (PCE) surpassing 14% in a single layer bulk heterojunction (BHJ) solar cell device have been reported. This review summarizes the most recent advances made in the development of electron donor terpolymers for organic photovoltaics (OPVs). The properties of the terpolymers are compared with their respective reference polymer.
ISSN:2296-8016
2296-8016
DOI:10.3389/fmats.2020.00280