Optimized Directed Virus Evolution to Accelerate the Generation of Oncolytic Coxsackievirus B3 Adapted to Resistant Colorectal Cancer Cells

Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Viruses 2024-12, Vol.16 (12), p.1958
Hauptverfasser: Elsner, Leslie, Dieringer, Babette, Geisler, Anja, Girod, Maxim, Van Linthout, Sophie, Kurreck, Jens, Fechner, Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging. For this purpose, the murine colorectal carcinoma cell line MC38, resistant to PD-H-induced lysis, was initially infected with PD-H at 0.1 multiplicity of infection (MOI). For subsequent passages, 15-30 µL of a 1:10 dilution of the cell culture supernatant was transferred to fresh MC38 cells early after virus-induced cell lysis became visible. By virus passage 10, complete cell lysis of MC38 cells was achieved. Sequencing of the passage 10 virus (P-10) revealed two nucleotide substitutions in the 5' UTR and six amino acid changes in the viral polyprotein compared to the PD-H founder. P-10, however, consisted of a heterogeneous virus population. Therefore, the detected mutations were introduced into the cDNA of PD-H, from which the recombinant virus PD-MC38 was generated. PD-MC38 exhibited significantly enhanced replication and lytic activity in MC38 cells compared to PD-H, whereas its oncolytic activity in other colorectal cancer cell lines was comparable to or even lower than that of PD-H. These findings demonstrate that volume-based passaging is suitable to generate tumor cell-specific adapted PD-H. Moreover, compared to the dose-dependent passaging, volume-based passaging significantly reduced the time required to generate the adapted virus.
ISSN:1999-4915
1999-4915
DOI:10.3390/v16121958