Solution Interpolation Method for Highly Oscillating Hyperbolic Equations
This paper deals with a novel numerical scheme for hyperbolic equations with rapidly changing terms. We are especially interested in the quasilinear equation ut+aux=f(x)u+g(x)un and the wave equation utt=f(x)uxx that have a highly oscillating term like f(x)=sin(x/ε), ε≪1. It also applies to the eq...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.479-488-451 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with a novel numerical scheme for hyperbolic equations with rapidly changing terms. We are especially interested in the quasilinear equation ut+aux=f(x)u+g(x)un and the wave equation utt=f(x)uxx that have a highly oscillating term like f(x)=sin(x/ε), ε≪1. It also applies to the equations involving rapidly changing or even discontinuous coefficients. The method is based on the solution interpolation and the underlying idea is to establish a numerical scheme by interpolating numerical data with a parameterized solution of the equation. While the constructed numerical schemes retain the same stability condition, they carry both quantitatively and qualitatively better performances than the standard method. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2013/546031 |