Use of Texture Analysis on Noncontrast MRI in Classification of Early Stage of Liver Fibrosis

Purpose. To compare the diagnostic value of texture analysis- (TA-) derived parameters from out-of-phase T1W, in-phase T1W, and T2W images in the classification of the early stage of liver fibrosis. Methods. Patients clinically diagnosed with hepatitis B infection, who underwent liver biopsy and non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of gastroenterology & hepatology 2021, Vol.2021, p.6677821-9
Hauptverfasser: Zhao, Ru, Gong, Xi-Jun, Ge, Ya-Qiong, Zhao, Hong, Wang, Long-Sheng, Yu, Hong-Zhen, Liu, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose. To compare the diagnostic value of texture analysis- (TA-) derived parameters from out-of-phase T1W, in-phase T1W, and T2W images in the classification of the early stage of liver fibrosis. Methods. Patients clinically diagnosed with hepatitis B infection, who underwent liver biopsy and noncontrast MRI scans, were enrolled. TA parameters were extracted from out-of-phase T1-weighted (T1W), in-phase T1W, and T2-weighted (T2W) images and calculated using Artificial Intelligent Kit (AK). Features were extracted including first-order, shape, gray-level cooccurrence matrix, gray-level run-length matrix, neighboring gray one tone difference matrix, and gray-level differential matrix. After statistical analyses, final diagnostic models were constructed. Receiver operating curves (ROCs) and areas under the ROC (AUCs) were used to assess the diagnostic value of each final model and 100-time repeated cross-validation was applied to assess the stability of the logistic regression models. Results. A total of 57 patients were enrolled in this study, with 27 in the fibrosis stage 
ISSN:2291-2789
2291-2797
DOI:10.1155/2021/6677821