An Approach for Rice Bacterial Leaf Streak Disease Segmentation and Disease Severity Estimation
Rice bacterial leaf streak (BLS) is a serious disease in rice leaves and can seriously affect the quality and quantity of rice growth. Automatic estimation of disease severity is a crucial requirement in agricultural production. To address this, a new method (termed BLSNet) was proposed for rice and...
Gespeichert in:
Veröffentlicht in: | Agriculture (Basel) 2021-05, Vol.11 (5), p.420 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rice bacterial leaf streak (BLS) is a serious disease in rice leaves and can seriously affect the quality and quantity of rice growth. Automatic estimation of disease severity is a crucial requirement in agricultural production. To address this, a new method (termed BLSNet) was proposed for rice and BLS leaf lesion recognition and segmentation based on a UNet network in semantic segmentation. An attention mechanism and multi-scale extraction integration were used in BLSNet to improve the accuracy of lesion segmentation. We compared the performance of the proposed network with that of DeepLabv3+ and UNet as benchmark models used in semantic segmentation. It was found that the proposed BLSNet model demonstrated higher segmentation and class accuracy. A preliminary investigation of BLS disease severity estimation was carried out based on our BLS segmentation results, and it was found that the proposed BLSNet method has strong potential to be a reliable automatic estimator of BLS disease severity. |
---|---|
ISSN: | 2077-0472 2077-0472 |
DOI: | 10.3390/agriculture11050420 |