Dynamics of IgM and IgG responses to the next generation of engineered Duffy binding protein II immunogen: Strain-specific and strain-transcending immune responses over a nine-year period

Background A low proportion of P. vivax-exposed individuals acquire protective strain-transcending neutralizing IgG antibodies that are able to block the interaction between the Duffy binding protein II (DBPII) and its erythrocyte-specific invasion receptor. In a recent study, a novel surface-engine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-05, Vol.15 (5), p.e0232786-e0232786, Article 0232786
Hauptverfasser: Medeiros, Camila M. P., Moreira, Eduardo U. M., Pires, Camilla, Torres, Leticia M., Guimaraes, Luiz F. F., Alves, Jessica R. S., Lima, Barbara A. S., Fontes, Cor J. F., Costa, Helena L., Brito, Cristiana F. A., Sousa, Tais N., Ntumngia, Francis B., Adams, John H., Kano, Flora S., Carvalho, Luzia H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background A low proportion of P. vivax-exposed individuals acquire protective strain-transcending neutralizing IgG antibodies that are able to block the interaction between the Duffy binding protein II (DBPII) and its erythrocyte-specific invasion receptor. In a recent study, a novel surface-engineered DBPII-based vaccine termed DEKnull-2, whose antibody response target conserved DBPII epitopes, was able to induce broadly binding-inhibitory IgG antibodies (BIAbs) that inhibit P. vivax reticulocyte invasion. Toward the development of DEKnull-2 as an effective P. vivax blood-stage vaccine, we investigate the relationship between naturally acquired DBPII-specific IgM response and the profile of IgG antibodies/BIAbs activity over time. Methodology/principal findings A nine-year follow-up study was carried-out among long-term P. vivax-exposed Amazonian individuals and included six cross-sectional surveys at periods of high and low malaria transmission. DBPII immune responses associated with either strain-specific (Sal1, natural DBPII variant circulating in the study area) or conserved epitopes (DEKnull-2) were monitored by conventional serology (ELISA-detected IgM and IgG antibodies), with IgG BIAbs activity evaluated by functional assays (in vitro inhibition of DBPII-erythrocyte binding). The results showed a tendency of IgM antibodies toward Sal1-specific response; the profile of Sal1 over DEKnull-2 was not associated with acute malaria and sustained throughout the observation period. The low malaria incidence in two consecutive years allowed us to demonstrate that variant-specific IgG (but not IgM) antibodies waned over time, which resulted in IgG skewed to the DEKnull-2 response. A persistent DBPII-specific IgM response was not associated with the presence (or absence) of broadly neutralizing IgG antibody response. Conclusions/significance The current study demonstrates that long-term exposure to low and unstable levels of P. vivax transmission led to a sustained DBPII-specific IgM response against variant-specific epitopes, while sustained IgG responses are skewed to conserved epitopes. Further studies should investigate on the role of a stable and persistent IgM antibody response in the immune response mediated by DBPII.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0232786