Adaptive harmony search algorithm utilizing differential evolution and opposition-based learning
An adaptive harmony search algorithm utilizing differential evolution and opposition-based learning (AHS-DE-OBL) is proposed to overcome the drawbacks of the harmony search (HS) algorithm, such as its low fine-tuning ability, slow convergence speed, and easily falling into a local optimum. In AHS-DE...
Gespeichert in:
Veröffentlicht in: | Mathematical Biosciences and Engineering 2021-01, Vol.18 (4), p.4226-4246 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An adaptive harmony search algorithm utilizing differential evolution and opposition-based learning (AHS-DE-OBL) is proposed to overcome the drawbacks of the harmony search (HS) algorithm, such as its low fine-tuning ability, slow convergence speed, and easily falling into a local optimum. In AHS-DE-OBL, three main innovative strategies are adopted. First, inspired by the differential evolution algorithm, the differential harmonies in the population are used to randomly perturb individuals to improve the fine-tuning ability. Then, the search domain is adaptively adjusted to accelerate the algorithm convergence. Finally, an opposition-based learning strategy is introduced to prevent the algorithm from falling into a local optimum. The experimental results show that the proposed algorithm has a better global search ability and faster convergence speed than other selected improved harmony search algorithms and selected metaheuristic approaches. Keywords: harmony search algorithm; differential evolution; opposition-based learning; adaptive adjustment strategy; optimization |
---|---|
ISSN: | 1551-0018 1551-0018 |
DOI: | 10.3934/mbe.2021212 |