Agro-Morphological and Molecular Characterization Reveal Deep Insights in Promising Genetic Diversity and Marker-Trait Associations in Fagopyrum esculentum and Fagopyrum tataricum

Characterisation of genetic diversity is critical to adequately exploit the potential of germplasm collections and identify important traits for breeding programs and sustainable crop improvement. Here, we characterised the phenotypic and genetic diversity of a global collection of the two cultivate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2023-09, Vol.12 (18), p.3321
Hauptverfasser: Pipan, Barbara, Sinkovič, Lovro, Neji, Mohamed, Janovská, Dagmar, Zhou, Meiliang, Meglič, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Characterisation of genetic diversity is critical to adequately exploit the potential of germplasm collections and identify important traits for breeding programs and sustainable crop improvement. Here, we characterised the phenotypic and genetic diversity of a global collection of the two cultivated buckwheat species Fagopyrum esculentum and Fagopyrum tataricum (190 and 51 accessions, respectively) using 37 agro-morphological traits and 24 SSR markers. A wide range of variation was observed in both species for most of the traits analysed. The two species differed significantly in most traits, with traits related to seeds and flowering contributing most to differentiation. The accessions of each species were divided into three major phenoclusters with no clear geographic clustering. At the molecular level, the polymorphic SSR markers were highly informative, with an average polymorphic information content (PIC) of over 0.65 in both species. Genetic diversity, as determined by Nei’s expected heterozygosity (He), was high (He = 0.77 and He = 0.66, respectively) and differed significantly between species (p = 0.03) but was homogeneously distributed between regions, confirming the lack of genetic structure as determined by clustering approaches. The weak genetic structure revealed by the phenotypic and SSR data and the low fixation indices in both species suggested frequent seed exchange and extensive cultivation and selection. In addition, 93 and 140 significant (p < 0.05) marker-trait associations (MTAs) were identified in both species using a general linear model and a mixed linear model, most of which explained >20% of the phenotypic variation in associated traits. Core collections of 23 and 13 phenotypically and genetically diverse accessions, respectively, were developed for F. esculentum and F. tataricum. Overall, the data analysed provided deep insights into the agro-morphological and genetic diversity and genetic relationships among F. esculentum and F. tataricum accessions and pointed to future directions for genomics-based breeding programs and germplasm management.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants12183321