Enhanced osteogenic differentiation in 3D hydrogel scaffold via macrophage mitochondrial transfer

To assess the efficacy of a novel 3D biomimetic hydrogel scaffold with immunomodulatory properties in promoting fracture healing. Immunomodulatory scaffolds were used in cell experiments, osteotomy mice treatment, and single-cell transcriptomic sequencing. In vitro, fluorescence tracing examined mac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanobiotechnology 2024-09, Vol.22 (1), p.540-26, Article 540
Hauptverfasser: Qiu, Shui, Cao, Lili, Xiang, Dingding, Wang, Shu, Wang, Di, Qian, Yiyi, Li, Xiaohua, Zhou, Xiaoshu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To assess the efficacy of a novel 3D biomimetic hydrogel scaffold with immunomodulatory properties in promoting fracture healing. Immunomodulatory scaffolds were used in cell experiments, osteotomy mice treatment, and single-cell transcriptomic sequencing. In vitro, fluorescence tracing examined macrophage mitochondrial transfer and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Scaffold efficacy was assessed through alkaline phosphatase (ALP), Alizarin Red S (ARS) staining, and in vivo experiments. The scaffold demonstrated excellent biocompatibility and antioxidant-immune regulation. Single-cell sequencing revealed a shift in macrophage distribution towards the M2 phenotype. In vitro experiments showed that macrophage mitochondria promoted BMSCs' osteogenic differentiation. In vivo experiments confirmed accelerated fracture healing. The GAD/Ag-pIO scaffold enhances osteogenic differentiation and fracture healing through immunomodulation and promotion of macrophage mitochondrial transfer.
ISSN:1477-3155
1477-3155
DOI:10.1186/s12951-024-02757-1