On locally superquadratic Hamiltonian systems with periodic potential

In this paper, we study the second-order Hamiltonian systems u ¨ − L ( t ) u + ∇ W ( t , u ) = 0 , where t ∈ R , u ∈ R N , L and W depend periodically on t , 0 lies in a spectral gap of the operator − d 2 / d t 2 + L ( t ) and W ( t , x ) is locally superquadratic. Replacing the common superquadrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2020-09, Vol.2020 (1), p.1-11, Article 146
1. Verfasser: Ye, Yiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the second-order Hamiltonian systems u ¨ − L ( t ) u + ∇ W ( t , u ) = 0 , where t ∈ R , u ∈ R N , L and W depend periodically on t , 0 lies in a spectral gap of the operator − d 2 / d t 2 + L ( t ) and W ( t , x ) is locally superquadratic. Replacing the common superquadratic condition that lim | x | → ∞ W ( t , x ) | x | 2 = + ∞ uniformly in t ∈ R by the local condition that lim | x | → ∞ W ( t , x ) | x | 2 = + ∞ a.e. t ∈ J for some open interval J ⊂ R , we prove the existence of one nontrivial homoclinic soluiton for the above problem.
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-020-01444-y