On locally superquadratic Hamiltonian systems with periodic potential
In this paper, we study the second-order Hamiltonian systems u ¨ − L ( t ) u + ∇ W ( t , u ) = 0 , where t ∈ R , u ∈ R N , L and W depend periodically on t , 0 lies in a spectral gap of the operator − d 2 / d t 2 + L ( t ) and W ( t , x ) is locally superquadratic. Replacing the common superquadrati...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2020-09, Vol.2020 (1), p.1-11, Article 146 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the second-order Hamiltonian systems
u
¨
−
L
(
t
)
u
+
∇
W
(
t
,
u
)
=
0
,
where
t
∈
R
,
u
∈
R
N
,
L
and
W
depend periodically on
t
, 0 lies in a spectral gap of the operator
−
d
2
/
d
t
2
+
L
(
t
)
and
W
(
t
,
x
)
is locally superquadratic. Replacing the common superquadratic condition that
lim
|
x
|
→
∞
W
(
t
,
x
)
|
x
|
2
=
+
∞
uniformly in
t
∈
R
by the local condition that
lim
|
x
|
→
∞
W
(
t
,
x
)
|
x
|
2
=
+
∞
a.e.
t
∈
J
for some open interval
J
⊂
R
, we prove the existence of one nontrivial homoclinic soluiton for the above problem. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-020-01444-y |