A Bayesian network model for prediction of low or failed fertilization in assisted reproductive technology based on a large clinical real-world data

To construct prediction models based on the Bayesian network (BN) learning method for the probability of fertilization failure (including low fertilization rate [LRF] and total fertilization failure [TFF]) in assisted reproductive technology (ART) treatment. A BN model was developed to predict TFF/L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reproductive biology and endocrinology 2023-01, Vol.21 (1), p.8-8, Article 8
Hauptverfasser: Tian, Tian, Kong, Fei, Yang, Rui, Long, Xiaoyu, Chen, Lixue, Li, Ming, Li, Qin, Hao, Yongxiu, He, Yangbo, Zhang, Yunjun, Li, Rong, Wang, Yuanyuan, Qiao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To construct prediction models based on the Bayesian network (BN) learning method for the probability of fertilization failure (including low fertilization rate [LRF] and total fertilization failure [TFF]) in assisted reproductive technology (ART) treatment. A BN model was developed to predict TFF/LFR. The model showed relatively high calibration in external validation, which could facilitate the identification of risk factors for fertilization disorders and improve the efficiency of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment. The prediction of TFF/LFR is very complex. Although some studies attempted to construct prediction models for TFF/LRF, most of the reported models were based on limited variables and traditional regression-based models, which are unsuitable for analyzing real-world clinical data. Therefore, none of the reported models have been widely used in routine clinical practice. To date, BN modeling analysis is a prominent and increasingly popular machine learning method that is powerful in dealing with dynamic and complex real-world data. A retrospective study was performed with 106,640 fresh embryo IVF/ICSI cycles from 2009 to 2019 in one of China's largest reproductive health centers. A total of 106, 640 cycles were included in this study, including 97,102 controls, 4,339 LFR cases, and 5,199 TFF cases. Twenty-four predictors were initially included, including 13 female-related variables, five male-related variables, and six variables related to IVF/ICSI treatment. BN modeling analysis with tenfold cross-validation was performed to construct the predictive model for TFF/LFR. The receiver operating characteristic (ROC) curves and the corresponding area under the curves (AUCs) were used to evaluate the performance of the BN model. All twenty-four predictors were first organized into seven hierarchical layers in a theoretical BN model, according to prior knowledge from previous literature and clinical practice. A machine-learning BN model was generated based on real-world clinical data, containing a total of eighteen predictors, of which the infertility type, ART method, and number of retrieved oocytes directly influence the probabilities of LFR/TFF. The prediction accuracy of the BN model was 91.7%. The AUC of the TFF versus control groups was 0.779 (95% CI: 0.766-0.791), with a sensitivity of 71.2% and specificity of 70.1%; the AUC of of TFF versus LFR groups was 0.807 (95% CI: 0.790-0.824), with a sensitivi
ISSN:1477-7827
1477-7827
DOI:10.1186/s12958-023-01065-x