Robust half-metallicity and magnetic phase transition in Sr2CrReO6 via strain engineering

Using ab-initio calculations, the electronic and magnetic properties of double perovskite oxide Sr 2 CrReO 6 with two type of strains: biaxial (along the [110]-direction) and hydrostatic (along [111]-direction) are investigated. The ground state of the unstrained system is half-metallic ferrimagneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-08, Vol.10 (1), p.13778-13778, Article 13778
Hauptverfasser: Ain, Qurat-Ul, Naseem, Shahnila, Nazir, Safdar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using ab-initio calculations, the electronic and magnetic properties of double perovskite oxide Sr 2 CrReO 6 with two type of strains: biaxial (along the [110]-direction) and hydrostatic (along [111]-direction) are investigated. The ground state of the unstrained system is half-metallic ferrimagnetic, due to a strong antiferromagnetic (AFM) coupling between Cr and Re atoms within both (GGA and GGA+ U ) exchange-correlation potentials. It is demonstrated that the robustness of half-metallicity can be preserved under the influence of both biaxial and hydrostatic strains. Interestingly, a transition from ferri-to-ferromagnetic is established due to Re spin flipping to that of the Cr ion (i.e. Cr and Re spin becomes parallel) within the GGA+ U method for both biaxial and hydrostatic tensile strains of ≥ + 2 % . The strong confinement of orbitals due to tensile strain results in the decrease of electron hopping which further reduced the AFM coupling strength between Cr and Re atoms, this leads to a ferri-to-ferromagnetic transition. However, the GGA scheme holds the ferrimagnetic state with both kinds of strains. This work shows that tensile strain is a feasible way to optimize the magnetic properties of perovskite oxides, which are presumed to be beneficial for spintronic technology.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-70768-7