A 7–13 GHz 10 W High-Efficiency MMIC Power Amplifier in 0.25 µm GaN HEMT Process

With the increase in applications of the millimeter wave spectrum for phased array radar systems, mobile 7–13 communication systems, and satellite systems, the demand for a wideband, high-efficiency, high-power monolithic microwave integrated circuit (MMIC) power amplifier (PA) is increasing. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-11, Vol.12 (21), p.10872
Hauptverfasser: Hu, Aizhen, Leng, Yongqing, Qiu, Xin, Luan, Tongyao, Peng, Yatao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the increase in applications of the millimeter wave spectrum for phased array radar systems, mobile 7–13 communication systems, and satellite systems, the demand for a wideband, high-efficiency, high-power monolithic microwave integrated circuit (MMIC) power amplifier (PA) is increasing. In this paper, a 7–13 GHz 10 W high-efficiency MMIC PA is designed. This amplifier consists of a two-stage circuit structure with two high electron mobility transistor (HEMT) cells for the driver stage and four HEMT cells for the power stage. To ensure high efficiency and a certain output power (Pout), both the driver–stage and power–stage transistors use a deep Class–AB bias. At the same time, in order to further improve the efficiency, low-loss and second–harmonic tuning techniques are used in the output and inter-stage matching networks, respectively. Finally, the electromagnetic simulation results show that within a frequency of 7–13 GHz, the amplifier achieves an average saturated continuous wave (CW) Pout of 40 dBm, a small signal gain of 14.5–15.5 dB, a power-added efficiency (PAE) of 30–46%, and the input and output return loss are better than 5 dB and 8 dB, respectively.
ISSN:2076-3417
2076-3417
DOI:10.3390/app122110872