Time Distance: A Novel Collision Prediction and Path Planning Method
In this paper, a new fast algorithm for path planning and a collision prediction framework for two dimensional dynamically changing environments are introduced. The method is called Time Distance (TD) and benefits from the space-time space idea. First, the TD concept is defined as the time interval...
Gespeichert in:
Veröffentlicht in: | Journal of applied and computational mechanics 2023-07, Vol.9 (3), p.656-677 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new fast algorithm for path planning and a collision prediction framework for two dimensional dynamically changing environments are introduced. The method is called Time Distance (TD) and benefits from the space-time space idea. First, the TD concept is defined as the time interval that must be spent in order for an object to reach another object or a location. Next, TD functions are derived as a function of location, velocity and geometry of objects. To construct the configuration-time space, TD functions in conjunction with another function named "Z-Infinity" are exploited. Finally, an explicit formula for creating the length optimal collision free path is presented. Length optimization in this formula is achieved using a function named "Route Function" which minimizes a cost function. Performance of the path planning algorithm is evaluated in simulations. Comparisons indicate that the algorithm is fast enough and capable to generate length optimal paths as the most effective methods do. Finally, as another usage of the TD functions, a collision prediction framework is presented. This framework consists of an explicit function which is a function of TD functions and calculates the TD of the vehicle with respect to all objects of the environment. |
---|---|
ISSN: | 2383-4536 |
DOI: | 10.22055/jacm.2022.40688.3675 |