An Ultrasensitive Ethanol Gas Sensor Based on a Dual-Nanoparticle In2O3/SnO2 Composite

As a VOC, ethanol can be found in human exhaled breath, and its concentration can be used as a biomarker of human liver disease. To detect trace-level concentrations of ethanol, an ultrasensitive ethanol sensor was developed based on a dual-nanoparticle In2O3/SnO2 composite that was prepared by hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (23), p.7823
Hauptverfasser: Zhang, Cheng, Zhang, Ze, Tian, Yao, Yu, Lingmin, Wang, Hairong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a VOC, ethanol can be found in human exhaled breath, and its concentration can be used as a biomarker of human liver disease. To detect trace-level concentrations of ethanol, an ultrasensitive ethanol sensor was developed based on a dual-nanoparticle In2O3/SnO2 composite that was prepared by hydrothermal synthesis, and its suspension was dipped on a flat electrode to form a gas sensor. The nanocomposite was characterized by an SEM (scanning electron microscope), XRD (X-ray diffraction), and a TEM (transmission electron microscope), and the nanoparticle structure was observed. The experimental results showed that gas sensors based on the In2O3/SnO2 nanocomposite had higher responses compared to sensors based on pure In2O3. Among the nanocomposites, the one with a In2O3-to-SnO2 mol ratio of 1:8 was used in the sensor with the highest response of 1.41 to 100 ppb ethanol at 150 °C, which also exhibited good repeatability. The ultrasensitive response to ethanol can be attributed to the faster electron migration rate and the increase in oxygen-absorbing sites caused by the n-n heterojunction in the nanocomposite. Due to its low detection limit, good repeatability, and relatively high responses in high humidity, this sensor has a potential application in exhaled breath detection.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24237823