A 30+ Year AVHRR LAI and FAPAR Climate Data Record: Algorithm Description and Validation

In- land surface models, which are used to evaluate the role of vegetation in the context of global climate change and variability, LAI and FAPAR play a key role, specifically with respect to the carbon and water cycles. The AVHRR-based LAI/FAPAR dataset offers daily temporal resolution, an improvem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2016-03, Vol.8 (3), p.263
Hauptverfasser: Claverie, Martin, Matthews, Jessica, Vermote, Eric, Justice, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In- land surface models, which are used to evaluate the role of vegetation in the context of global climate change and variability, LAI and FAPAR play a key role, specifically with respect to the carbon and water cycles. The AVHRR-based LAI/FAPAR dataset offers daily temporal resolution, an improvement over previous products. This climate data record is based on a carefully calibrated and corrected land surface reflectance dataset to provide a high-quality, consistent time-series suitable for climate studies. It spans from mid-1981 to the present. Further, this operational dataset is available in near real-time allowing use for monitoring purposes. The algorithm relies on artificial neural networks calibrated using the MODIS LAI/FAPAR dataset. Evaluation based on cross-comparison with MODIS products and in situ data show the dataset is consistent and reliable with overall uncertainties of 1.03 and 0.15 for LAI and FAPAR, respectively. However, a clear saturation effect is observed in the broadleaf forest biomes with high LAI (>4.5) and FAPAR (>0.8) values.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs8030263