Analysis of the susceptibility in a fluid system with Neumann – plus boundary conditions

The behaviour of the local and total susceptibilities of a fluid system bounded by different surfaces is studied in the framework of the Ginsburg-Landau Ising type model. The case of a plain geometry, Neumann-infinity boundary conditions under variations of the temperature and an external ordering f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Djondjorov, Peter, Vassilev, Vassil, Dantchev, Daniel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The behaviour of the local and total susceptibilities of a fluid system bounded by different surfaces is studied in the framework of the Ginsburg-Landau Ising type model. The case of a plain geometry, Neumann-infinity boundary conditions under variations of the temperature and an external ordering field is considered. Exact analytic expressions for the order parameter, local and total susceptibilities in such a system are presented. They are used to analyse the phase behaviour of fluids confined in regions close to the bulk critical point of the respective infinite system.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201814501001