Stock Index Prices Prediction via Temporal Pattern Attention and Long-Short-Term Memory

This study attempts to predict stock index prices using multivariate time series analysis. The study’s motivation is based on the notion that datasets of stock index prices involve weak periodic patterns, long-term and short-term information, for which traditional approaches and current neural netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Multimedia 2020, Vol.2020 (2020), p.1-7
Hauptverfasser: Wu, Qiufeng, Ouyang, Hongbing, Lei, Binbin, Wei, Xiaolu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study attempts to predict stock index prices using multivariate time series analysis. The study’s motivation is based on the notion that datasets of stock index prices involve weak periodic patterns, long-term and short-term information, for which traditional approaches and current neural networks such as Autoregressive models and Support Vector Machine (SVM) may fail. This study applied Temporal Pattern Attention and Long-Short-Term Memory (TPA-LSTM) for prediction to overcome the issue. The results show that stock index prices prediction through the TPA-LSTM algorithm could achieve better prediction performance over traditional deep neural networks, such as recurrent neural network (RNN), convolutional neural network (CNN), and long and short-term time series network (LSTNet).
ISSN:1687-5680
1687-5699
DOI:10.1155/2020/8831893