Societal Applications of HF Skywave Radar

After exploratory research in the 1950s, HF skywave ‘over-the-horizon’ radars (OTHR) were developed as operating systems in the 1960s for defence missions, notably the long-range detection of ballistic missiles, aircraft, and ships. The potential for a variety of non-defence applications soon became...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-12, Vol.14 (24), p.6287
1. Verfasser: Anderson, Stuart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:After exploratory research in the 1950s, HF skywave ‘over-the-horizon’ radars (OTHR) were developed as operating systems in the 1960s for defence missions, notably the long-range detection of ballistic missiles, aircraft, and ships. The potential for a variety of non-defence applications soon became apparent, but the size, cost, siting requirements, and tasking priority hindered the implementation of these societal roles. A sister technology—HF surface wave radar (HFSWR)—evolved during the same period but, in this more compact form, the non-defence applications dominated, with hundreds of such radars presently deployed around the world, used primarily for ocean current mapping and wave measurements. In this paper, we examine the ocean monitoring capabilities of the latest generation of HF skywave radars, some shared with HFSWR, some unique to the skywave modality, and explore some new possibilities, along with selected technical details for their implementation. We apply state-of-the-art modelling and experimental data to illustrate the kinds of information that can be generated and exploited for civil, commercial, and scientific purposes. The examples treated confirm the relevance and value of this information to such diverse activities as shipping, fishing, offshore resource extraction, agriculture, communications, weather forecasting, and climate change studies.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14246287