About the convergence rate Hermite – Pade approximants of exponential functions

This paper studies uniform convergence rate of Hermite\,--\,Pad\'eapproximants (simultaneous Pad\'e approximants)$\{\pi^j_{n,\overrightarrow{m}}(z)\}_{j=1}^k$for a system of exponential functions $\{e^{\lambda_jz}\}_{j=1}^k$,where $\{\lambda_j\}_{j=1}^k$ are different nonzerocomplex number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiâ Saratovskogo universiteta. Novaâ seriâ. Seriâ Matematika. Mehanika. Informatika (Online) 2021-05, Vol.21 (2), p.162-172
Hauptverfasser: Starovoitov, A. P., Kechko, E. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies uniform convergence rate of Hermite\,--\,Pad\'eapproximants (simultaneous Pad\'e approximants)$\{\pi^j_{n,\overrightarrow{m}}(z)\}_{j=1}^k$for a system of exponential functions $\{e^{\lambda_jz}\}_{j=1}^k$,where $\{\lambda_j\}_{j=1}^k$ are different nonzerocomplex numbers. In the general case a research of theasymptotic properties of Hermite\,--\,Pad\'e approximants is arather complicated problem. This is due to the fact that in theirstudy mainly asymptotic methods are used, in particular,the saddle-point method. An important phase in the applicationof this method is to find a special saddle contour (the Cauchyintegral theorem allows to choose an integration contour ratherarbitrarily), according to which integration should be carriedout. Moreover, as a rule, one has to repy only on intuition.In this paper, we propose a new method to studying the asymptotic properties of Hermite\,--\,Pad\'eapproximants, that is based on the Taylor theorem and heuristicconsiderations underlying the Laplace and saddle-point methods,as well as on the multidimensional analogue of the Van Rossumidentity that we obtained. The proved theorems complement andgeneralize the known results by other authors.
ISSN:1816-9791
2541-9005
DOI:10.18500/1816-9791-2021-21-2-162-172