A Note on the Girth of (3, 19)-Regular Tanner's Quasi-Cyclic LDPC Codes
In this article, we study the cycle structure of (3, 19)-regular Tanner's quasi-cyclic (QC) LDPC codes with code length 19p , where p is a prime and p\equiv 1~(\bmod ~57) , and transform the conditions for the existence of cycles of lengths not more than 10 into polynomial equations in a 57...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.28582-28590 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the cycle structure of (3, 19)-regular Tanner's quasi-cyclic (QC) LDPC codes with code length 19p , where p is a prime and p\equiv 1~(\bmod ~57) , and transform the conditions for the existence of cycles of lengths not more than 10 into polynomial equations in a 57th root of unity of the prime field \mathbb {F}_{p} . By employing the Euclidean division algorithm to check whether these equations have solutions over the prime field \mathbb {F}_{p} , the girth values of (3, 19)-regular Tanner's QC-LDPC codes of code length 19p are determined. In order to show the good performance of this class of QC-LDPC codes, numerical results are also provided. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3058732 |