Experimental Study on Mechanical Behavior of Shear Connectors of Square Concrete Filled Steel Tube

In order to quantitatively evaluate the shear-bearing capacity of shear connectors of square concrete filled steel tube (CFST), push-out tests on 14 square CFSTs with shear connectors have been carried out. Among the 14 CFSTs, there are 13 specimens with steel plate connectors and one specimen with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2017-08, Vol.7 (8), p.818
Hauptverfasser: Qiao, Qiyun, Zhang, Wenwen, Qian, Zhiwei, Cao, Wanlin, Liu, Wenchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to quantitatively evaluate the shear-bearing capacity of shear connectors of square concrete filled steel tube (CFST), push-out tests on 14 square CFSTs with shear connectors have been carried out. Among the 14 CFSTs, there are 13 specimens with steel plate connectors and one specimen with steel bar connectors. The following factors are investigated to figure out their influences on the performance of CFSTs, which are the width to thickness ratio of steel tube, thickness of steel plate, length of steel plate, strength of concrete, welding condition of steel plate, number of steel plate layer and interlayer spacing. The test results show that the ultimate bearing capacity and the elastic stiffness increase with decreasing width to thickness ratio of the steel tube, and increasing thickness and length of the steel plate. With increasing concrete strength, the ultimate bearing capacity also increases. However, the welding condition has no effect on the ultimate bearing capacity. The ultimate bearing capacity of the CFST with double-layer steel plate is greater than that with single-layer steel plate. The ultimate bearing capacity of steel bar type shear connector is 87% greater than that of the steel plate type shear connector, and the steel bar specimen shows good ductility. A formula for calculating the shear-bearing capacity of shear connectors has been developed, and the calculated shear-bearing capacities are in good agreement with the test data.
ISSN:2076-3417
2076-3417
DOI:10.3390/app7080818