Periodic Stabilization of Continuous-Time Multi-Module Impulsive Switched Linear Systems

This paper mainly investigates periodic stabilization issue for a class of multi-module impulsive switched linear systems. It is proven that the considered system is exponentially stabilizable if there exists a periodic control Lyapunov function whose value decreases periodically rather than at each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.16648-16654
Hauptverfasser: Cao, Menglong, Ai, Zidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper mainly investigates periodic stabilization issue for a class of multi-module impulsive switched linear systems. It is proven that the considered system is exponentially stabilizable if there exists a periodic control Lyapunov function whose value decreases periodically rather than at each time instant. A Lyapunov converse theorem is also presented. In particular, a constructive method is used to determine stabilizable impulsive switching law. Moreover, the relaxed set is introduced to reduce the computational complexity, and relaxed versions of Lyapunov theorem and its converse theorem are established. Finally, a numerical example is provided to illustrate the effectiveness of the approach.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2891344