Klasifikasi Penyakit Kanker Serviks Berdasarkan Kebiasaan dan Rekam Medis dengan Metode C4.5

Kanker serviks adalah salah satu penyakit yang paling sering ditemui dan dapat menyebabkan kematian pada Wanita di seluruh dunia. Di Indonesia, jumlah kematian akibat kanker serviks terus meningkat setiap tahun, sebgaian besar disebabkan oleh diagnosis dan skrining yang terlambat. berbagai faktor ya...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jurnal nasional teknologi dan sistem informasi (TEKNOSI) Universitas Andalas 2024-05, Vol.10 (1), p.36-44
Hauptverfasser: Kemal Taufiq Hidayah, Budi Arifitama, Silverster Dian Handy Permana
Format: Artikel
Sprache:ind
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kanker serviks adalah salah satu penyakit yang paling sering ditemui dan dapat menyebabkan kematian pada Wanita di seluruh dunia. Di Indonesia, jumlah kematian akibat kanker serviks terus meningkat setiap tahun, sebgaian besar disebabkan oleh diagnosis dan skrining yang terlambat. berbagai faktor yang disebabkan oleh kanker serviks seperti kebiasaan yang dilakukan ialah, berganti-ganti pasangan seksual, merokok atau pasif merokok, memiliki infeksi kelamin, memiliki riwayat kanker dan sebagainya. untuk mendeteksi adanya kanker serviks atau tidak, dapat dilakukan dengan cara pemeriksaan tes IVA (inspeksi visual asam asetat) atau yang disebut dengan tes schiller. Metode klasifikasi ialah bagian dari Teknik data mining untuk melakukan prediksi, Dalam penelitian ini, ingin meningkatkan akurasi dengan menggunakan metode C4.5 untuk melakukan klasifikasi penyakit kanker serviks berdasarkan kebiasaan pasien. Dua belas atribut dan satu atribut dari hasil pengujian digunakan dalam proses klasifikasi. Dataset tersebut terdiri dari 1080 entri, yang akan dibagi menjadi 864 data dan 216 data pelatihan. Data ini diperoleh dari website UCI Repository. Penelitian ini menghasilkan akurasi sebesar 94.10%, presisi sebesar 95.57%, recall sebesar 96.33% dan AUC (Area Under Curve) sebesar 0.987 yang diukur menggunakan matrix confussion atau matriks kebingungan dengan alat rapidminer.
ISSN:2460-3465
2476-8812
DOI:10.25077/TEKNOSI.v10i1.2024.36-44