HyperKon: A Self-Supervised Contrastive Network for Hyperspectral Image Analysis

The use of a pretrained image classification model (trained on cats and dogs, for example) as a perceptual loss function for hyperspectral super-resolution and pansharpening tasks is surprisingly effective. However, RGB-based networks do not take full advantage of the spectral information in hypersp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-09, Vol.16 (18), p.3399
Hauptverfasser: Ayuba, Daniel La’ah, Guillemaut, Jean-Yves, Marti-Cardona, Belen, Mendez, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of a pretrained image classification model (trained on cats and dogs, for example) as a perceptual loss function for hyperspectral super-resolution and pansharpening tasks is surprisingly effective. However, RGB-based networks do not take full advantage of the spectral information in hyperspectral data. This inspired the creation of HyperKon, a dedicated hyperspectral Convolutional Neural Network backbone built with self-supervised contrastive representation learning. HyperKon uniquely leverages the high spectral continuity, range, and resolution of hyperspectral data through a spectral attention mechanism. We also perform a thorough ablation study on different kinds of layers, showing their performance in understanding hyperspectral layers. Notably, HyperKon achieves a remarkable 98% Top-1 retrieval accuracy and surpasses traditional RGB-trained backbones in both pansharpening and image classification tasks. These results highlight the potential of hyperspectral-native backbones and herald a paradigm shift in hyperspectral image analysis.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16183399