Cracks propagation mechanism of intergranular corrosion in Al–Cu–Li AA2195 alloys governed by constant relative humidity

Atmospheric corrosion of Al–Cu–Li AA2195 alloys was investigated in constant relative humidity (RH) controlled by saturated salt solutions. Corrosion process was governed by RH, especially for the transformation of corrosion products and crack growth. The deceleration corrosion kinetics and maximum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research and technology 2024-09, Vol.32, p.165-176
Hauptverfasser: Zhao, Jingxin, Dan, Zhenhua, Chang, Hui, Zhou, Lian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atmospheric corrosion of Al–Cu–Li AA2195 alloys was investigated in constant relative humidity (RH) controlled by saturated salt solutions. Corrosion process was governed by RH, especially for the transformation of corrosion products and crack growth. The deceleration corrosion kinetics and maximum pit depth were found to be in accordance with the power laws. The corrosion products gradually transformed from γ-Al(OH)3 and γ-AlOOH into NaAlCO3(OH)2 and γ-Al(OH)3 affected by RH and exposure time. The localized formation of pitting, filiform and exfoliation corrosion was induced by the presence of Cu/Mg/Li-containing secondary precipitates, including T1(Al2CuLi), θ'(Al2Cu) and S'(Al2CuMg) phases. Secondary precipitates with lower potential were prone to triggering intergranular corrosion. The primary cracks penetrated into the internal matrix along large angular grain boundaires. Secondary cracks propagated along corrosion channels of the stress-concentrated triple grain boundaries with higher schimd factors, larger Kernel average misorientation and higher geometrically necessary dislocation densities. A crack propagation mechanism controlled by RH was proposed.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2024.07.145