Distributed algorithm under cooperative or competitive priority users in cognitive networks

Opportunistic spectrum access (OSA) problem in cognitive radio (CR) networks allows a secondary (unlicensed) user (SU) to access a vacant channel allocated to a primary (licensed) user (PU). By finding the availability of the best channel, i.e., the channel that has the highest availability probabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on wireless communications and networking 2020-12, Vol.2020 (1), p.1-31, Article 145
Hauptverfasser: Almasri, Mahmoud, Mansour, Ali, Moy, Christophe, Assoum, Ammar, Osswald, Christophe, Lejeune, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Opportunistic spectrum access (OSA) problem in cognitive radio (CR) networks allows a secondary (unlicensed) user (SU) to access a vacant channel allocated to a primary (licensed) user (PU). By finding the availability of the best channel, i.e., the channel that has the highest availability probability, a SU can increase its transmission time and rate. To maximize the transmission opportunities of a SU, various learning algorithms are suggested: Thompson sampling (TS), upper confidence bound (UCB), ε -greedy, etc. In our study, we propose a modified UCB version called AUCB (Arctan-UCB) that can achieve a logarithmic regret similar to TS or UCB while further reducing the total regret, defined as the reward loss resulting from the selection of non-optimal channels. To evaluate AUCB’s performance for the multi-user case, we propose a novel uncooperative policy for a priority access where the k th user should access the k th best channel. This manuscript theoretically establishes the upper bound on the sum regret of AUCB under the single or multi-user cases. The users thus may, after finite time slots, converge to their dedicated channels. It also focuses on the Quality of Service AUCB (QoS-AUCB) using the proposed policy for the priority access. Our simulations corroborate AUCB’s performance compared to TS or UCB.
ISSN:1687-1499
1687-1472
1687-1499
DOI:10.1186/s13638-020-01738-w