On the focusing generalized Hartree equation
In this paper we give a review of the recent progress on the focusing generalized Hartree equation, which is a nonlinear Schrodinger-type equation with the nonlocal nonlinearity, expressed as a convolution with the Riesz potential. We describe the local well-posedness in H1 and Hs settings, discuss...
Gespeichert in:
Veröffentlicht in: | Mathematics in applied sciences and engineering 2020-12, Vol.1 (4), p.381-400 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we give a review of the recent progress on the focusing generalized Hartree equation, which is a nonlinear Schrodinger-type equation with the nonlocal nonlinearity, expressed as a convolution with the Riesz potential. We describe the local well-posedness in H1 and Hs settings, discuss the extension to the global existence and scattering, or finite time blow-up. We point out different techniques used to obtain the above results, and then show the numerical investigations of the stable blow-up in the L2 -critical setting. We finish by showing known analytical results about the stable blow-up dynamics in the L2 -critical setting. |
---|---|
ISSN: | 2563-1926 2563-1926 |
DOI: | 10.5206/mase/10855 |