Achieving Fairness with Decision Trees: An Adversarial Approach

Fair classification has become an important topic in machine learning research. While most bias mitigation strategies focus on neural networks, we noticed a lack of work on fair classifiers based on decision trees even though they have proven very efficient. In an up-to-date comparison of state-of-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data science and engineering 2020-06, Vol.5 (2), p.99-110
Hauptverfasser: Grari, Vincent, Ruf, Boris, Lamprier, Sylvain, Detyniecki, Marcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fair classification has become an important topic in machine learning research. While most bias mitigation strategies focus on neural networks, we noticed a lack of work on fair classifiers based on decision trees even though they have proven very efficient. In an up-to-date comparison of state-of-the-art classification algorithms in tabular data, tree boosting outperforms deep learning (Zhang et al. in Expert Syst Appl 82:128–150, 2017). For this reason, we have developed a novel approach of adversarial gradient tree boosting. The objective of the algorithm is to predict the output Y with gradient tree boosting while minimizing the ability of an adversarial neural network to predict the sensitive attribute S . The approach incorporates at each iteration the gradient of the neural network directly in the gradient tree boosting. We empirically assess our approach on four popular data sets and compare against state-of-the-art algorithms. The results show that our algorithm achieves a higher accuracy while obtaining the same level of fairness, as measured using a set of different common fairness definitions.
ISSN:2364-1185
2364-1541
DOI:10.1007/s41019-020-00124-2