Spatial heterogeneity in unintended pregnancy and its determinants in India
Understanding the geographic variation of unintended pregnancy is crucial for informing tailored policies and programs to improve maternal and child health outcomes. Although spatial analyses of unintended pregnancy have been conducted in several developing countries, such research is lacking in Ind...
Gespeichert in:
Veröffentlicht in: | BMC Pregnancy and Childbirth 2024-10, Vol.24 (1), p.670-16, Article 670 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding the geographic variation of unintended pregnancy is crucial for informing tailored policies and programs to improve maternal and child health outcomes. Although spatial analyses of unintended pregnancy have been conducted in several developing countries, such research is lacking in India. This study addresses this gap by investigating the geographic distribution and determinants of unintended pregnancy in India.
We analysed data from the National Family Health Survey-5 encompassing 232,920 pregnancies occurring between 2014 and 2021 in India. We conducted a spatial analysis to investigate the distribution of unintended pregnancies at both state and district levels using choropleth maps. To assess spatial autocorrelation, Global Moran's I statistic was employed. Cluster and outlier analysis techniques were then utilized to identify significant clusters of unintended pregnancies across India. Furthermore, we employed Spatial Lag Model (SLM) and Spatial Error Model (SEM) to investigate the factors influencing the occurrence of unintended pregnancies within districts.
The national rate of unintended pregnancy in India is approximately 9.1%, but this rate varies significantly between different states and districts of India. The rate exceeded 10% in the states situated in the northern plain such as Haryana, Delhi, Uttar Pradesh, Bihar, and West Bengal, as well as in the Himalayan states of Himachal Pradesh, Uttarakhand, Sikkim, and Arunachal Pradesh. Moreover, within these states, numerous districts reported rates exceeding 15%. The results of Global Moran's I indicated a statistically significant geographical clustering of unintended pregnancy rates at the district level, with a coefficient of 0.47 (p |
---|---|
ISSN: | 1471-2393 1471-2393 |
DOI: | 10.1186/s12884-024-06850-z |