Inverse Limit Spaces Satisfying a Poincaré Inequality

We give conditions on Gromov-Hausdorff convergent inverse systems of metric measure graphs which imply that the measured Gromov-Hausdorff limit (equivalently, the inverse limit) is a PI space i.e., it satisfies a doubling condition and a Poincaré inequality in the sense of Heinonen-Koskela [12]. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and Geometry in Metric Spaces 2015-01, Vol.3 (1)
Hauptverfasser: Cheeger, Jeff, Kleiner, Bruce
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give conditions on Gromov-Hausdorff convergent inverse systems of metric measure graphs which imply that the measured Gromov-Hausdorff limit (equivalently, the inverse limit) is a PI space i.e., it satisfies a doubling condition and a Poincaré inequality in the sense of Heinonen-Koskela [12]. The Poincaré inequality is actually of type (1, 1). We also give a systematic construction of examples for which our conditions are satisfied. Included are known examples of PI spaces, such as Laakso spaces, and a large class of new examples. As follows easily from [4], generically our examples have the property that they do not bilipschitz embed in any Banach space with Radon-Nikodym property. For Laakso spaces, thiswas noted in [4]. However according to [7] these spaces admit a bilipschitz embedding in L1. For Laakso spaces, this was announced in [5].
ISSN:2299-3274
2299-3274
DOI:10.1515/agms-2015-0002