Dynamic Task Allocation for Heterogeneous Multi-UAVs in Uncertain Environments Based on 4DI-GWO Algorithm
As the missions and environments of unmanned aerial vehicles (UAVs) become increasingly complex in both space and time, it is essential to investigate the dynamic task assignment problem of heterogeneous multi-UAVs aiming at ground targets in an uncertain environment. Considering that most of these...
Gespeichert in:
Veröffentlicht in: | Drones (Basel) 2024-06, Vol.8 (6), p.236 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the missions and environments of unmanned aerial vehicles (UAVs) become increasingly complex in both space and time, it is essential to investigate the dynamic task assignment problem of heterogeneous multi-UAVs aiming at ground targets in an uncertain environment. Considering that most of these existing tasking methods are limited to static allocation in a deterministic environment, this paper firstly constructs the fuzzy multiconstraint programming model for heterogeneous multi-UAV dynamic task assignment based on binary interval theory, taking into account the effects of uncertain factors like target location information, mission execution time, and the survival probability of UAVs. Then, the dynamic task allocation strategy is designed, consisting of two components: dynamic time slice setting and the four-dimensional information grey wolf optimization (4DI-GWO) algorithm. The dynamic time slices create the dynamic adjustment of solving frequency and effect, and the 4DI-GWO algorithm is improved by designing the four-dimensional information strategy that expands population diversity and enhances global search capability and other strategies. The numerical analysis shows that the proposed strategy can effectively solve the dynamic task assignment problem of heterogeneous multi-UAVs under an uncertain environment, and the optimization of fitness values demonstrates improvements of 5~30% in comparison with other optimization algorithms. |
---|---|
ISSN: | 2504-446X 2504-446X |
DOI: | 10.3390/drones8060236 |