BibMon: An open source Python package for process monitoring, soft sensing, and fault diagnosis

This paper introduces BibMon, a Python package that provides predictive models for data-driven fault detection and diagnosis, soft sensing, and process condition monitoring. Key features include regression and reconstruction models, preprocessing pipelines, alarms, and visualization through control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital Chemical Engineering 2024-12, Vol.13, p.100182, Article 100182
Hauptverfasser: Melo, Afrânio, Lemos, Tiago S.M., Soares, Rafael M., Spina, Deris, Clavijo, Nayher, Campos, Luiz Felipe de O., Câmara, Maurício Melo, Feital, Thiago, Anzai, Thiago K., Thompson, Pedro H., Diehl, Fábio C., Pinto, José Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces BibMon, a Python package that provides predictive models for data-driven fault detection and diagnosis, soft sensing, and process condition monitoring. Key features include regression and reconstruction models, preprocessing pipelines, alarms, and visualization through control charts and diagnostic maps. BibMon also includes real and simulated datasets for benchmarking, comparative performance analysis of different models, and hyperparameter tuning. The package is designed to be highly extensible, allowing for easy integration of new models and methodologies through its object-oriented implementation. Currently, BibMon is in production at Petrobras, a major player in the energy industry, monitoring numerous industrial assets and enabling real-time detection and diagnosis of equipment and process faults. The software is open source and available at: https://github.com/petrobras/bibmon.
ISSN:2772-5081
2772-5081
DOI:10.1016/j.dche.2024.100182