Cellular and molecular outcomes of glutamine supplementation in the brain of succinic semialdehyde dehydrogenase‐deficient mice
Succinic semialdehyde dehydrogenase deficiency (SSADHD) manifests with low levels of glutamine in the brain, suggesting that central glutamine deficiency contributes to pathogenesis. Recently, we attempted to rescue the disease phenotype of aldh5a1−/− mice, a murine model of SSADHD with dietary glut...
Gespeichert in:
Veröffentlicht in: | JIMD reports 2020-11, Vol.56 (1), p.58-69 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Succinic semialdehyde dehydrogenase deficiency (SSADHD) manifests with low levels of glutamine in the brain, suggesting that central glutamine deficiency contributes to pathogenesis. Recently, we attempted to rescue the disease phenotype of aldh5a1−/− mice, a murine model of SSADHD with dietary glutamine supplementation. No clinical rescue and no central glutamine improvement were observed. Here, we report the results of follow‐up studies of the cellular and molecular basis of the resistance of the brain to glutamine supplementation. We first determined if the expression of genes involved in glutamine metabolism was impacted by glutamine feeding. We then searched for changes of brain histology in response to glutamine supplementation, with a focus on astrocytes, known regulators of glutamine synthesis in the brain. Glutamine supplementation significantly modified the expression of glutaminase (gls) (0.6‐fold down), glutamine synthetase (glul) (1.5‐fold up), and glutamine transporters (solute carrier family 7, member 5 [slc7a5], 2.5‐fold up; slc38a2, 0.6‐fold down). The number of GLUL‐labeled cells was greater in the glutamine‐supplemented group than in controls (P |
---|---|
ISSN: | 2192-8312 2192-8304 2192-8312 |
DOI: | 10.1002/jmd2.12151 |