Crabtree Effect on Rhodosporidium toruloides Using Wood Hydrolysate as a Culture Media

The interest in microorganisms to produce microbial lipids at large-scale processes has increased during the last decades. Rhodosporidium toruloides-1588 could be an efficient option for its ability to simultaneously utilize five- and six-carbon sugars. Nevertheless, one of the most important charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fermentation (Basel) 2023-01, Vol.9 (1), p.11
Hauptverfasser: Osorio-González, Carlos S., Saini, Rahul, Hegde, Krishnamoorthy, Brar, Satinder Kaur, Lefebvre, Alain, Avalos Ramírez, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interest in microorganisms to produce microbial lipids at large-scale processes has increased during the last decades. Rhodosporidium toruloides-1588 could be an efficient option for its ability to simultaneously utilize five- and six-carbon sugars. Nevertheless, one of the most important characteristics that any strain needs to be considered or used at an industrial scale is its capacity to grow in substrates with high sugar concentrations. In this study, the effect of high sugar concentrations and the effect of ammonium sulfate were tested on R. toruloides-1588 and its capacity to grow and accumulate lipids using undetoxified wood hydrolysates. Batch fermentations showed a catabolic repression effect on R. toruloides-1588 growth at sugar concentrations of 120 g/L. The maximum lipid accumulation was 8.2 g/L with palmitic, stearic, oleic, linoleic, and lignoceric acids as predominant fatty acids in the produced lipids. Furthermore, R. toruloides-1588 was able to utilize up to 80% of the total xylose content. Additionally, this study is the first to report the effect of using high xylose concentrations on the growth, sugar utilization, and lipid accumulation by R. toruloides-1588.
ISSN:2311-5637
2311-5637
DOI:10.3390/fermentation9010011