A Geometric Accuracy Error Analysis Method for Turn-Milling Combined NC Machine Tool
Turn-Milling Combined NC machine tool is different from traditional machine tools in structure and process realization. As an important means in the design stage, the analysis method of geometric accuracy error is also different from the traditional method. The actual errors and the error compensati...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2020-10, Vol.12 (10), p.1622 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Turn-Milling Combined NC machine tool is different from traditional machine tools in structure and process realization. As an important means in the design stage, the analysis method of geometric accuracy error is also different from the traditional method. The actual errors and the error compensation values are a pair of "symmetry" data sets which are connected by the movement of machine tools. The authors try to make them more consistent through this work. The geometric error terms were firstly determined by topological structure analysis, then based on homogeneous coordinate transformation and multibody system theory, the geometric error model was established. With the interval theory, the function rule of sensitivity of geometric error sources to spatial errors was analyzed in detail, and the global maximum interval sensitivity of nine geometric error sources was extracted, providing a theoretical basis for error compensation and precision distribution. The geometric error sensitivity analysis method proposed in this paper can accurately evaluate the influence weights of each error term on the machining accuracy, and identify the important sensitive error terms with great influence on the machining accuracy from many error terms. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym12101622 |