Vutiglabridin exerts anti-ageing effects in aged mice through alleviating age-related metabolic dysfunctions

Ageing alters the ECM, leading to mitochondrial dysfunction and oxidative stress, which triggers an inflammatory response that exacerbates with age. Age-related changes impact satellite cells, affecting muscle regeneration, and the balance of proteins. Furthermore, ageing causes a decline in NAD+ le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental gerontology 2023-10, Vol.181, p.112269-112269, Article 112269
Hauptverfasser: Hyeon, Jooseung, Lee, Jihan, Kim, Eunju, Lee, Hyeong Min, Kim, Kwang Pyo, Shin, Jaejin, Park, Hyung Soon, Lee, Yun-Il, Nam, Chang-Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ageing alters the ECM, leading to mitochondrial dysfunction and oxidative stress, which triggers an inflammatory response that exacerbates with age. Age-related changes impact satellite cells, affecting muscle regeneration, and the balance of proteins. Furthermore, ageing causes a decline in NAD+ levels, and alterations in fat metabolism that impact our health. These various metabolic issues become intricately intertwined with ageing, leading to a variety of individual-level diseases and profoundly affecting individuals' healthspan. Therefore, we hypothesize that vutiglabridin capable of alleviating these metabolic abnormalities will be able to ameliorate many of the problems associated with ageing. The efficacy of vutiglabridin, which alleviates metabolic issues by enhancing mitochondrial function, was assessed in aged mice treated with vutiglabridin and compared to untreated elderly mice. On young mice, vutiglabridin-treated aged mice, and non-treated aged mice, the Senescence-associated beta-galactosidase staining and q-PCR for ageing marker genes were carried out. Bulk RNA-seq was carried out on GA muscle, eWAT, and liver from each group of mice to compare differences in gene expression in various gene pathways. Blood from each group of mice was used to compare and analyze the ageing lipid profile. SA-β-gal staining of eWAT, liver, kidney, and spleen of ageing mice showed that vutiglabridin had anti-ageing effects compared to the control group, and q-PCR of ageing marker genes including Cdkn1a and Cdkn2a in each tissue showed that vutiglabridin reduced the ageing process. In aged mice treated with vutiglabridin, GA muscle showed improved homeostasis compared to controls, eWAT showed restored insulin sensitivity and prevented FALC-induced inflammation, and liver showed reduced inflammation levels due to prevented TLO formation, improved mitochondrial complex I assembly, resulting in reduced ROS formation. Furthermore, blood lipid analysis revealed that ageing-related lipid profile was relieved in ageing mice treated with vutiglabridin versus the control group. Vutiglabridin slows metabolic ageing mechanisms such as decreased insulin sensitivity, increased inflammation, and altered NAD+ metabolism in adipose tissue in mice experiments, while also retaining muscle homeostasis, which is deteriorated with age. It also improves the lipid profile in the blood and restores mitochondrial function in the liver to reduce ROS generation. •Vutiglabridin exhibits an
ISSN:0531-5565
1873-6815
DOI:10.1016/j.exger.2023.112269