The La+3-, Nd+3-, Bi+3-Doped Ceria as Mixed Conductor Materials for Conventional and Single-Component Solid Oxide Fuel Cells
Clean energy devices are essential in today’s environment to combat climate change and work towards sustainable development. In this paper, the potential materials A2Ce2O7−δ (A = La+3, Nd+3, Bi+3) were analyzed for clean energy devices, specifically for conventional and single-component solid oxide...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2023-07, Vol.16 (14), p.5308 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clean energy devices are essential in today’s environment to combat climate change and work towards sustainable development. In this paper, the potential materials A2Ce2O7−δ (A = La+3, Nd+3, Bi+3) were analyzed for clean energy devices, specifically for conventional and single-component solid oxide fuel cells (SC-SOFCs). The wet chemical route has been followed for the preparation of samples. X-ray diffraction patterns showed that all three samples exhibited a defected fluorite cubic structure. It also revealed the presence of dopants in the ceria, which was confirmed by the fingerprint region of FTIR. The optical behavior, fuel cell performance and electrochemical behavior were studied by UV–vis, fuel cell testing apparatus and EIS, respectively. The SEM results showed that all samples had irregular polygons. In Raman spectra, the F2g mode corresponding to the space group (Fm3m) confirms the fluorite structure. The Raman spectra showed that A2Ce2O7−δ (A = La+3, Nd+3, Bi+3) have different trends. The conventional fuel cell performance showed that the maximum power density of Bi2Ce2O7 was 0.65 Wcm−2 at 600 °C. The performance of A2Ce2O7−δ (A = La3+, Nd3+, Bi3+) as a single-component fuel cell revealed that Nd2Ce2O7−δ is the best choice with semiconductors conductors ZnO and NCAL. The highest power density (Pmax) of the Nd2Ce2O7/ZnO was 0.58 Wcm−2, while the maximum power output (Pmax) of the Nd2Ce2O7/NCAL was 0.348 Wcm−2 at 650 °C. All the samples showed good agreement with the ZnO as compared to NCAL for SC-SOFCs. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16145308 |