On-surface synthesis of planar dendrimers via divergent cross-coupling reaction
Dendrimers are homostructural and highly branched macromolecules with unique dendritic effects and extensive use in multidisciplinary fields. Although thousands of dendrimers have been synthesized in solution, the on-surface synthetic protocol for planar dendrimers has never been explored, limiting...
Gespeichert in:
Veröffentlicht in: | Nature communications 2019-06, Vol.10 (1), p.2414-2414, Article 2414 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dendrimers are homostructural and highly branched macromolecules with unique dendritic effects and extensive use in multidisciplinary fields. Although thousands of dendrimers have been synthesized in solution, the on-surface synthetic protocol for planar dendrimers has never been explored, limiting the elucidation of the mechanism of dendritic effects at the single-molecule level. Herein, we describe an on-surface synthetic approach to planar dendrimers, in which exogenous palladium is used as a catalyst to address the divergent cross-coupling of aryl bromides with isocyanides. This reaction enables one aryl bromide to react with two isocyanides in sequential steps to generate the divergently grown product composed of a core and two branches with high selectivity and reactivity. Then, a dendron with four branches and dendrimers with eight or twelve branches in the outermost shell are synthesized on Au(111). This work opens the door for the on-surface synthesis of various planar dendrimers and relevant macromolecular systems.
Although many strategies exist to synthesize dendrimers in solution, the synthesis of planar dendrimers on a surface has proven challenging. Here, the authors produce planar dendrimers through a divergent on-surface cross-coupling reaction between one aryl bromide and two isocyanides, which enables the growth of branches from a single reactive site. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-10407-6 |