The cohomology of Torelli groups is algebraic
The Torelli group of $W_g = \#^g S^n \times S^n$ is the group of diffeomorphisms of $W_g$ fixing a disc that act trivially on $H_n(W_g;\mathbb{Z} )$ . The rational cohomology groups of the Torelli group are representations of an arithmetic subgroup of $\text{Sp}_{2g}(\mathbb{Z} )$ or $\text{O}_{g,g}...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2020, Vol.8, Article e64 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Torelli group of
$W_g = \#^g S^n \times S^n$
is the group of diffeomorphisms of
$W_g$
fixing a disc that act trivially on
$H_n(W_g;\mathbb{Z} )$
. The rational cohomology groups of the Torelli group are representations of an arithmetic subgroup of
$\text{Sp}_{2g}(\mathbb{Z} )$
or
$\text{O}_{g,g}(\mathbb{Z} )$
. In this article we prove that for
$2n \geq 6$
and
$g \geq 2$
, they are in fact algebraic representations. Combined with previous work, this determines the rational cohomology of the Torelli group in a stable range. We further prove that the classifying space of the Torelli group is nilpotent. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2020.41 |