Enhancing groundwater quality assessment in coastal area: A hybrid modeling approach

Monitoring of groundwater (GW) resources in coastal areas is vital for human needs, agriculture, ecosystems, securing water supply, biodiversity, and environmental sustainability. Although the utilization of water quality index (WQI) models has proven effective in monitoring GW resources, it has fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-07, Vol.10 (13), p.e33082, Article e33082
Hauptverfasser: Uddin, Md Galal, Rana, M.M. Shah Porun, Diganta, Mir Talas Mahammad, Bamal, Apoorva, Sajib, Abdul Majed, Abioui, Mohamed, Shaibur, Molla Rahman, Ashekuzzaman, S.M., Nikoo, Mohammad Reza, Rahman, Azizur, Moniruzzaman, Md, Olbert, Agnieszka I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monitoring of groundwater (GW) resources in coastal areas is vital for human needs, agriculture, ecosystems, securing water supply, biodiversity, and environmental sustainability. Although the utilization of water quality index (WQI) models has proven effective in monitoring GW resources, it has faced substantial criticism due to its inconsistent outcomes, prompting the need for more reliable assessment methods. Therefore, this study addressed this concern by employing the data-driven root mean squared (RMS) models to evaluate groundwater quality (GWQ) in the coastal Bhola district near the Bay of Bengal, Bangladesh. To enhance the reliability of the RMS-WQI model, the research incorporated the extreme gradient boosting (XGBoost) machine learning (ML) algorithm. For the assessment of GWQ, the study utilized eleven crucial indicators, including turbidity (TURB), electric conductivity (EC), pH, total dissolved solids (TDS), nitrate (NO3−), ammonium (NH4+), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), and iron (Fe). In terms of the GW indicators, concentration of K, Ca and Mg exceeded the guideline limit in the collected GW samples. The computed RMS-WQI scores ranged from 54.3 to 72.1, with an average of 65.2, categorizing all sampling sites' GWQ as “fair.” In terms of model reliability, XGBoost demonstrated exceptional sensitivity (R2 = 0.97) in predicting GWQ accurately. Furthermore, the RMS-WQI model exhibited minimal uncertainty (
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e33082