Performance of a geometric deep learning pipeline for HL-LHC particle tracking

The Exa.TrkX project has applied geometric learning concepts such as metric learning and graph neural networks to HEP particle tracking. Exa.TrkX’s tracking pipeline groups detector measurements to form track candidates and filters them. The pipeline, originally developed using the TrackML dataset (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2021-10, Vol.81 (10), p.1-14, Article 876
Hauptverfasser: Ju, Xiangyang, Murnane, Daniel, Calafiura, Paolo, Choma, Nicholas, Conlon, Sean, Farrell, Steven, Xu, Yaoyuan, Spiropulu, Maria, Vlimant, Jean-Roch, Aurisano, Adam, Hewes, Jeremy, Cerati, Giuseppe, Gray, Lindsey, Klijnsma, Thomas, Kowalkowski, Jim, Atkinson, Markus, Neubauer, Mark, DeZoort, Gage, Thais, Savannah, Chauhan, Aditi, Schuy, Alex, Hsu, Shih-Chieh, Ballow, Alex, Lazar, Alina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Exa.TrkX project has applied geometric learning concepts such as metric learning and graph neural networks to HEP particle tracking. Exa.TrkX’s tracking pipeline groups detector measurements to form track candidates and filters them. The pipeline, originally developed using the TrackML dataset (a simulation of an LHC-inspired tracking detector), has been demonstrated on other detectors, including DUNE Liquid Argon TPC and CMS High-Granularity Calorimeter. This paper documents new developments needed to study the physics and computing performance of the Exa.TrkX pipeline on the full TrackML dataset, a first step towards validating the pipeline using ATLAS and CMS data. The pipeline achieves tracking efficiency and purity similar to production tracking algorithms. Crucially for future HEP applications, the pipeline benefits significantly from GPU acceleration, and its computational requirements scale close to linearly with the number of particles in the event.
ISSN:1434-6044
1434-6052
DOI:10.1140/epjc/s10052-021-09675-8